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T-junctions occur where surface strips start or terminate. This paper de-

velops a new way to create smooth piecewise polynomial free-form spline

surfaces from quad-meshes that include T-junctions. All mesh nodes are

interpreted as control points of GT-splines, i.e. geometrically smoothly

joined piecewise polynomials. GT-splines are akin to and compatible with

B-splines and cover simple T-junctions by two polynomial pieces of degree

bi-4 and more complex ones by four such patches. They complement multi-

sided surface constructions in generating free-form surfaces with adaptive

layout.

Since GT-splines do not require a global coordination of knot intervals,

GT-constructions are easy to deploy and can provide smooth surfaces with

T-junctions where T-splines can not have a smooth parameterization. GT-

constructions display a uniform highlight line distribution on input meshes

where alternatives, such as Catmull-Clark subdivision, exhibit oscillations.
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1. INTRODUCTION

Where strips of surface patches are forced together, it is natural to
terminate some; and where strips are stretched wide, it is natural
to spawn additional strips to keep the size and aspect ratio of the
patches within bounds. Stopping or initiating surface strips leads to
T-junctions where two finer surface pieces meet one coarser piece

The simplest T-junction-configuration, a Ṫ -net (pronounced T1-
net), is shown in Fig. 1a: a nominally pentagonal face with exactly
one vertex of valence 3 is surrounded by quadrilateral facets. In
isolation such transitions are easily modeled by smooth hierarchi-
cal splines. But as part of a larger model, their knot-intervals need
to be globally coordinated. That coordination is cumbersome. The
small quad-mesh in Fig. 2 shows that it may even be impossible.

(a) Ṫ -net layout (b) convex Ṫ -net

Fig. 1. A control net with a single isolated T-junction.

T-junctions allow introducing geometry of higher detail, or to
merge two separately-developed spline surfaces T-junctions also
prominently arise when replacing the complex and global con-
straints of strict quad-meshing [Bommes et al. 2012; Vaxman et al.
2016] by T-meshes, based on triangle meshes [Li et al. 2006; Lai
et al. 2008], curvature directions [Alliez et al. 2003; Marinov and
Kobbelt 2004], directional fields [Myles et al. 2010; Myles et al.
2014a; Pietroni et al. 2016], optimized for planarity [Zadravec et al.
2010; Peng and Wonka 2013] or extracted from local parametriza-
tions [Ray et al. 2006; Jakob et al. 2015].

T-junctions and hierarchical splines. One approach to incor-
porating T-junctions is hierarchical splines (see e.g. [Kraft 1998;
Sederberg et al. 2003; Giannelli et al. 2012; Dokken et al. 2013;
Kang et al. 2015]). Hierarchical splines require that all surface
pieces share a single uv-parameterization: for any choice of v, the
u-knot intervals must add to the same number; and for any choice
of u, the v-intervals must add to one fixed number. This restriction
on the knot sums is natural when refining a single patch. But when
the input is a given quadrangulation the knot intervals have to be
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Fig. 2. T-splines require that the sum of knot intervals on opposing edges

of any face must be equal (Rule 1 of [Sederberg et al. 2003]). This forces

the width of the horizontal knot intervals of the grey helical strip to be zero,

preventing a smooth T-spline parameterization. (cf. Fig. 13 for a smooth

GT-spline surface.)

assigned and hence coordinated. Joining many pieces can then be-
come cumbersome since the local knot intervals have to globally
add up to matching sums. Where the mesh is not regular, the local
construction in [Wang et al. 2011] is therefore only C0 despite gen-
erating one order of magnitude more patches than quads. [Seder-
berg et al. 2008] additionally points to shape deficiencies where
T-splines with dissimilar knot spacings are merged and proposes
special splines of much higher degree. The global construction of
[Li et al. 2006] introduces additional T-joints and new extraordi-
nary points that are not motivated by geometry but solely by enforc-
ing knot interval constraints (Pre-dating [Li et al. 2012], the con-
struction does not guarantee ’analysis-suitable’ knot-distributions.)
Akin to [Li et al. 2006, Fig.5], the example in Fig. 2 demonstrates
that, without modifying the quad-mesh, global coordination is not
always possible without loosing smoothness and even continuity of
the parameterization. In the example, each red strip forms a bracelet
that is half as wide when it comes back to meet up with the start-
ing edge. Since Rule 1 of any T-spline construction according to
[Sederberg et al. 2003] mandates that the horizontal knot interval
of the red strip be the same where the single-wide edge meets the
double-wide edge, the horizontal knot interval of the grey helical
strip of patches must be zero. Since, in the example, three consec-
utive grey horizontal knot intervals are zero, the degree bi-3 spline
parameterization is formally C−1. That is, the most basic prop-
erty of T-splines prevents a smooth parameterization for a class
of patch layouts that could be hidden in any large scale quad ar-
rangement. The bracelet implies that joining spline surfaces with a
smooth T-spline parameterization is not always feasible since this,
too, requires making equal the knot interval sums. The slightly
larger mesh of Fig. 18a demonstrates a more complex incompati-
bility with any assignment of knot-intervals for smooth T-splines.
In summary, while hierarchical splines are naturally suited for in-
troducing T-junctions in quad meshes, they are not naturally suited
for generating surfaces from quad meshes with T-junctions.

T-junctions and Catmull-Clark subdivision. A strictly local
construction is provided by Catmull-Clark subdivision [Catmull
and Clark 1978]. Here the underlying model is splines with uni-
form knot spacing and local support. Therefore the parameteriza-
tions need not be globally coordinated. However, as Fig. 3a demon-

strates for the convex input Ṫ -net of Fig. 1a, the resulting surfaces
can be of poor quality: the silhouette dips and rises and the high-
light lines oscillate near the T-junction. We note that the oscilla-
tions already manifest themselves in the first two subdivision steps
and hence rule out Catmull-Clark mesh refinement even as a pre-
processor for turning a T-junction into a pair of isolated vertices
of valence three and five. (We verified these ‘first step artifacts’
[Augsdörfer et al. 2011] by replacing, in a separate computation,
the red limit surface in Fig. 3a by a high-quality surface construc-
tion.)

T-junctions and GT-splines. This paper develops a new lo-
cal construction, a geometric approach to T-junctions. This GT-

(a) Catmull-Clark subdivision

(b) this paper: GT-splines

Fig. 3. Surfaces generated from the convex input Ṫ -net of Fig. 1b. The red

regions in (a) represent an infinite sequence of bi-3 patches covering the 5-

sided and 3-sided extraordinary Catmull-Clark neighborhoods arising from

a Ṫ -net. The red region in (b) consists of two bi-4 patches by which the

GT-construction covers the Ṫ -net. Catmull-Clark subdivision produces, in

the first two steps, a flattened silhouette and a correspondingly non-uniform

highlight line distribution (right).

construction does not require global knot interval coordination and
yields better shape than Catmull-Clark subdivision (see Fig. 3a vs
3b). The GT-construction is based on reparameterization, the natu-
ral technique for transitioning between unequal parameterizations
on opposite sides of a T-junction. Consequently the construction

leverages the framework of geometric continuity. For Ṫ -nets, the
resulting surfaces

—consist of a frame of bi-3 (bi-cubic) patches filled by two patches
of degree bi-4 (this ‘cap’ is red in Fig. 1b).

—The bi-4 cap is internally smooth and joins the bi-cubic patches
with tangent continuity (G1)

—The bi-4 cap yields good highlight line distributions on all of a
large number of challenging input meshes.

—The Appendix provides simple explicit formulas for all relevant
Bernstein Bézier coefficients of the GT-construction in terms of
the local Ṫ -net.

—GT-splines complement few-piece polynomial constructions
such as [Karčiauskas et al. 2016] covering extraordinary points
to model smooth free-form surfaces of maximal degree bi-4.

We also present two variants of the GT-construction, to generate
smooth caps for multiple T-junctions within one facet whose ex-
tensions cross or are parallel.
Overview. Section 2 reviews basic concepts of the construction of
smooth surfaces. Section 3 defines a bi-3 frame of patches that tran-
sitions to the surrounding surface. Section 4 describes the G1 bi-4

GT-construction of the cap for Ṫ -nets. Section 5 and Section 6 de-
velop caps for cases of adjacent T-junctions: for two T-junctions
opposite one and for two T-junctions with crossing directions. Sec-
tion 7 compares the constructions for challenging input data, ex-
plains the choices taken along the way and lists the limitations.
Section 8 shows how GT-splines collaborate with algorithms in the
literature to smoothly cover multi-sided neighborhoods by an over-
all smooth bi-4 surface.

2. DEFINITIONS AND SETUP

We will construct a T-junction surface by averaging alternative in-
terpretations of the mesh points as regular control points (see Fig. 5
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and Section 3). This yields a frame of bi-3 polynomial patches to
be filled by a cap consisting of polynomial patches of degree bi-4.
The following definitions make this approach precise.

The GT-splines are a collection of tensor-product patches in
Bernstein-Bézier form (BB-form; see e.g. [Farin 1988]):

f(u, v) :=
d

∑

i=0

d
∑

j=0

fijB
d
i (u)B

d
j (v) , (u, v) ∈ [0..1]2,

where Bd
k(t) :=

(

d

k

)

(1 − t)d−ktk are the BB polynomials of de-
gree d and fij are the BB-coefficients. Adjacent patches join with
Gk continuity if their kth-order jets (one-sided Taylor expansion)
match along their common boundary after a change of variables ρ.
This characterization is equivalent to formulations of Ck continuity
of manifolds in terms of charts, see e.g. [Peters 2002]. We use the

succinct characterization that two surface pieces f̃ and f sharing a
boundary curve e join G1 if there is a suitably oriented and non-

singular reparameterization ρ : R2 → R
2 so that the jets ∂k f̃ and

∂k(f ◦ ρ) agree along e for k = 0, 1. Although ρ is just a change
of variables, its choice is crucial for the properties of the resulting
surface. Throughout, we will choose e to correspond to the patch
parameters (u, 0 = v). Then the relevant Taylor expansion of the
reparameterization ρ with respect to v is ρ := (u+ b(u)v, a(u)v)
and the chain rule of differentiation yields the G1 constraints

∂v f̃(u, 0)− a(u)∂vf(u, 0)− b(u)∂uf(u, 0) = 0. (1)

If f̃ and f are polynomials then a and b are rational functions whose

degree is bounded in terms of the degree of f̃ and f [Peters 1991].

(a) Extended Ṫ -net (b) Bi-3 neighborhood

Fig. 4. An isolated T-junction in an extended Ṫ -net (a) provides (b) a bi-3

neighborhood (solid,for context only) and a C
2-prolongation in BB-form

(inner green mesh) that is the only part used for the GT-construction.

C1 continuity of the splines over non-uniform knot sequences
can be recast as G1 continuity of patches defined over unit do-
mains (see e.g. [Karčiauskas and Peters 2011]). For example, if f

and f̃ are consecutive curve segments originally associated with
intervals [−1, 0] and [0, 1

2
] of a C1 spline with knot sequence

{. . . ,−1, 0, 1

2
, . . .} then both f and f̃ can be newly defined, each

on the interval [0, 1], and they then join as β∂uf(1) = ∂u f̃(0) with
β := 1/2. When we want to point out that surface patches are, in
one variable, related by the identity and, in the other, by C1 con-
tinuity over non-uniform knot sequence, we refer to the transition
as: C1 with parameter β.

Our main construction focusses on Ṫ -nets that consist, as shown
in Fig. 1, of quadrilaterals and one nominally five-sided facet. For

context and exposition, we can extend the Ṫ -net by one layer of
quadrilaterals (see Fig. 4a). This allows applying, away from the

five-sided facet, the well-known bi-cubic (bi-3) B-spline to BB-
form conversion rules (see e.g. [Farin 1988]). The resulting C2 bi-3

spline neighborhood is colored brown in Fig. 4b. The smaller Ṫ -net
( Fig. 1 ) provides a tensor-border of degree 3 and depth 2, the C2-
prolongation of second-order Hermite data shown as a green net of

BB-coefficients in Fig. 4b. Given the tensor-border, the Ṫ -net in-
terior of 4 + 4+ 5+ 5 control points (see the stencils in Fig. 5d,f)
provides all the information for the GT-construction. All formulas

(stencils) of the bi-4 cap in terms of the Ṫ -net interior are provided
in the Appendix.

ql

(a) q
l

qr

(b) q
r

l1

l0

l1m

r1

r0

r1m

(c) Interpretation as BB-patches of degree bi-3, overlaid in (e)

55 11

32 88

8 22

(d) ✷ × 1
72

bdbk

tdtk

(e) frame

22 4646

184184 88

46 2424 11

(f) ◦ × 1
576

Fig. 5. Constructing the frame. The regular left (a) and right (b) control

nets obtained by re-connecting the nodes of the Ṫ -net define six bi-3 patches

each. (e) Completion of the frame. (d,f) Stencils of the points q
b,−1
✷ = q

b,1
✷

marked ✷ and q
t,−1
◦ = q

t,1
◦ marked by ◦. in (e).

3. CONSTRUCTION OF A BI-3 FRAME OF

PATCHES FOR CAPPING A Ṫ -NET

The surface corresponding to a Ṫ -net will consist of a frame of
bi-3 patches and a central cap consisting of two bi-4 patches. This
section builds the frame. For i = −1, 0, 1 the frame has left patches
ql,i, right patches qr,i, (Fig. 5c) and for j ∈ {−1, 1} top patches
qt,j and bottom patches qb,j (Fig. 5e). The ribbon is derived by

re-connecting the nodes of the Ṫ -net to form two regular nets, q
l

from the left (see Fig. 5a) and q
r from the right (see Fig. 5b).

We now interpret q
l and q

r as bi-3 B-spline control nets and
convert them to BB-form. As illustrated in Fig. 5c the so-derived
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patches agree – except for the lower boundary curves of the top
patches and the upper boundary of the bottom patches. The bottom
curves overlap only at their endpoints, marked as a magenta and a
cyan box in Fig. 5c. A new common BB-control point, also marked
as a blue box in Fig. 5e, is chosen to be the average of these two can-
didates: Fig. 5d displays the explicit stencil for the common point

q✷ := (qb,−1
✷ +q

b,1
✷ )/2 obtained by this averaging. The two direct

neighbors of q✷ are chosen to make the combined boundary curve
C2. (The blue disks are defined by the C1-prolongation of ql,−1

and qr,−1). The top patches are subdivided at their midpoint and
the resulting overlap is then treated like that of the bottom: Fig. 5f
displays the explicit stencil for the common point q◦ obtained by
this averaging Although this split into qt,−1 and qt,1 serves only
to accommodate the lower boundary of the top patches, extensive
experiments show this split to be critical for achieving good shape
(see e.g. Fig. 12). The resulting frame of bi-3 patches is C2 except
along the four hv-curves, the red curves in Fig. 6c between the hor-
izontal and the vertical strips of the frame: ql,−1 to qb,−1, ql,1 to
qt,−1, qr,−1 to qb,1, qr,1 to qt,1. Across the hv-curves the continu-
ity is C1. Since the construction did not change the BB-coefficients
derived from q

l and q
r that match the tensor-border (Fig. 4b), the

frame joins C2 with the splines surrounding it.

l

t

b

v

u

v

u

v

u

(a) C
1-prolongations

p2p1

(b) central bi-4 patches

(c) final cap

Fig. 6. Construction of the bi-4 cap. (a) the mismatch of the C
1-

prolongations is resolved by reparameterizing them. (b) Interior coefficients

minimize the distance to bi-cubics. (c) final layout: the bi-3 patches are C1-

connected across the (red) hv-curves.

4. CENTRAL Ṫ -NET CAP CONSTRUCTION

To complete the surface, we construct a central cap (red in Fig. 6) of
degree bi-4 that fills the frame so that all transitions are at least G1.
The bi-4 cap consists of two patches pl, pr; see Fig. 6c. Since the
construction of pr mirrors that of pl, we discuss only pl. Fig. 6a
shows the C1-prolongations t of qt,−1 and b of qb,−1 in black and
l of ql,0 in green. While b is consistent with l, the prolongations t
and l are inconsistent (due to the split of the top patch when con-
structing the frame). Since we reparameterize l linearly (to mini-
mize the final patch degree) to match t, we also need to reparam-
eterize b after all. Together, the choice of parameterizations in Eq.

(1) are

a(u) := b(u) :=
left(l) : 1− u

2
0

top(t) : 1 (1− u)u
bottom(b) : 1 − 1

2
(1− u)u.

(2)

The interior BB-coefficients (circles in Fig. 6b) of the bi-4 cap are
determined so that columns of BB-coefficients form degree-raised
curves of true degree 3. By construction, see Fig. 6c, the red bi-
4 cap is internally C1 and joins with G1-continuity to the green
frame.

5. CAPS FOR PARALLEL T-JUNCTIONS

Configurations with multiple T-junctions can in principle be locally

re-meshed to separate them into isolated Ṫ -nets. For completeness,
and to compare what surface quality can be achieved, we investi-
gate configurations where two T-junctions face another, as shown in
Fig. 7b. We call the configuration a

...
T -net (pronounced T3-net). It

has one nominally 7-sided face. Such T-junctions can arise, for ex-
ample, from configuration Fig. 7a by removing the two red edges of
a triangle attached to a point of valence 5. (Asymmetrically remov-
ing one yields a mesh with one T-junction as in Fig. 7c). Applying
Catmull-Clark subdivision to

...
T -junctions leads to poor surfaces.

As for Ṫ -nets, first a bi-3 frame is constructed. Fig. 7e,f provide
the stencils for the points marked ✷ and ◦. Except across the red
hv-curves between the horizontal and the vertical strips, the frame

is C2. In the spirit of the bi-4 Ṫ -net construction, a bi-4 cap

(a) pre-
...
T -mesh (b)

...
T -net (c) re-mesh

(d) frame

7 14

32 88

8 22

(e) ✷ × 1
72

4 11

16 44

3 3

(f) ◦ × 1
36

Fig. 7. Construction of the frame for a
...
T -junction.

for the
...
T -net is constructed by subdividing, in the ratio shown in

Fig. 8a, the C1-prolongation of the frame from the top; and then
evenly splitting the middle prolongation of the bottom. Both the
top and bottom prolongations are C1-connected (in the horizontal
direction) with the same continuity parameters from left to right:
β = 1

2
, β = 1, β = 2. This implies a continuity parameter of

β = 2

3
across the top hv-curves. For the prolongation l of ql,0

(see Fig. 8b) to match the split prolongation of the top, the data are
reparameterized according to

a(u) := b(u) :=
left(l) : 1− u/3 0
top(left) : 1 1

2
(1− u)u

bottom(left) : 1 − 1

3
(1− u)u.

(3)
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(For the right top and bottom reparameterizations, b(u) is negated.)
The remaining (circled) BB-coefficients in Fig. 8 are chosen to
make their columns have actual degree 3.

: 12

: 11

(a) splitting the pro-

longation

v

u

v

u

v

u

v

u

v

u

(b) reparameteri-

zation

(c) bi-4 cap

Fig. 8. bi-4 cap for a
...
T -net.

6. CAPS FOR TWO T-JUNCTIONS IN CROSSING

DIRECTIONS

We also investigate configurations with two T-junctions as shown

in Fig. 9a. We call the configuration a T̈ -net (pronounced T2-net).
It has one nominally 6-sided face. Note that such configurations are
explicitly excluded in dyadic T-meshes [Kovacs et al. 2015].

(a) T̈ -net (b) frame

(c) reparameterizations (d) bi-4 cap (red)

Fig. 9. Bi-4 cap for a T̈ -configuration. The red axes in (c) indicate the

v-parameter.

Capping T̈ -nets with good surface quality is similar but more
challenging than the earlier constructions. As before, B-spline to
Bézier conversion yields the green Bézier control points in Fig. 9b,
now with both the top and the right side patches subdivided.

The corner points (blue boxes in Fig. 9b) and the middle, blue
circle coefficients of innermost (blue) boundary curves of the frame
are determined only in the last step of the construction. The di-
rect neighbors of the corner points are chosen so that adjacent bi-3
patches of the frame connect C1 (with ratios 1,1 lower left, 1/2,1/2
upper right and 1/2,1 otherwise); the direct neighbors of the middle
points are determined so that each boundary curve is internally C2.

The C1-prolongations are not compatible at the corners (see
Fig. 9c). To make them compatible they are re-parameterized with

a(u) := b(u) :=
top− left : 1− u

4

1

2
(1− u)u

top− right : 3

4
− u

4
− 1

2
(1− u)u

bottom− left : 1− u
4

− 1

4
(1− u)u

bottom− right : 3

4
− u

4

1

4
(1− u)u.

This list of the reparameterizations is complete due to the (com-
binatorially) diagonal symmetry (see the local coordinate systems
in Fig. 9c). The reparameterized tensor-border is of degree 4 and
depth 1 and ensures G1 continuity of the central cap with the
frame. Choosing to join C2 the four 3 × 3 groups of interior BB-
coefficients leaves free one group shown as red disks. Finally, we
minimize, over all 11 bi-3 patches of the frame and the 4 bi-4
patches of the central cap, the functional F3 where

Fκf :=

∫ 1

0

∫ 1

0

∑

i+j=κ,i,j≥0

κ!

i!j!
(∂i

s∂
j
t f(s, t))

2dsdt.

We minimize the sum with respect to 17 unknown coefficients: 4
corner (blue box), 4 mid-edge (blue circle) and 9 inner ones (red
disks in Fig. 9d). In the implementation, these 17 coefficients enter

as affine combinations of T̈ -net points with pre-computed coeffi-
cients.

The choice F3 is the result of testing a series of input meshes in-
cluding the challenging elliptic configuration in Fig. 10. Fig. 11
confirms that this choice also works well for a wave-like input
mesh.

(a) T̈ -net (b) BB-nets (c) default F3

(d) F2 (e) F4 (f) F5

Fig. 10. The surfaces obtained by minimizing functionals. (a) convex T̈ -

net. (b) BB-coefficients of the frame (green) and the central bi-4 cap (red).

(c-f) Highlight lines.

(a) T̈ -net (b) frame and cap (c) highlight lines

Fig. 11. A T̈ -net (F3) surface for a non-convex input mesh.
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7. DISCUSSION AND COMPARISON

7.1 The frame construction: to split or not to split

Note the flaws in the highlight line distribution of the surface in
Fig. 12b. For the same input mesh Fig. 1b, the highlight line distri-
bution of Fig. 12b is much worse than that of the GT-construction
Fig. 3b. Despite being formally smooth, surfaces generated by
not subdividing the frame patch opposite the T-junction have poor
highlight lines. Evidently splitting, though not required by formal
smoothness contraints, improves shape quality.

(a) cap layout (b) highlight lines

Fig. 12. An alternative construction that does not split the patch opposite

to the T-junction leads to a poor highlight line distribution.

7.2 Comparing GT-splines to T-splines

In general a comparison to hierarchical splines does not make sense
since we proved at the outset that not all meshes with T-junctions
admit smooth T-splines. For one such configuration, the bracelet
mesh of Fig. 2 (that does not admit a C1 T-spline), Fig. 13 demon-
strates that applying GT-splines yields a bi-4 surface with an excel-
lent highlight line distribution.

Fig. 13. The GT-spline surface for the T-mesh of Fig. 2 that does not admit

a C
1 T-spline. The bi-4 cap in red; the right image shows highlight lines.

(a) Ṫ -net (b) highlight lines (c) mean curvature

Fig. 14. Two regular meshes are merged with a T-junction.

Fig. 14 shows the case of two regular meshes of different quad-
patch count joined via a T-junction. T-splines require forming a
common parameter domain, that, while easy for simple meshes, is
impossible for more complex meshes such as Fig. 18. The result of
directly applying a GT-spline is displayed in Fig. 14b,c. To estab-
lish an upper bound on the quality of the highlight line distribution,
Fig. 15 compares GT-splines to T-splines in the form of standard bi-
cubic tensor-product splines. The top row of Fig. 15 shows in order

(a) the Ṫ -net input to the GT-construction, (b) the geometrically
identical T-mesh, with all knot intervals are 1 except for 0.5 on the
thick edges; and (c) the mesh resulting from splitting the cyan knot

(a) GT-spline input (b) T-spline input (c) B-spline input

(d) Ṫ -net (e) re-mesh (f) (T-)spline (g) GT-spline

(h) input mesh (i) re-mesh (j) (T-) spline (k) GT-spline

Fig. 15. Comparisons to T-splines and tensor-product splines. Since, in

these examples, the T- and B-spline surfaces coincide, we refer to them as

(T-)spline surfaces.

intervals yielding new (cyan disks) and moved (cyan circles) con-
trol points. Since the T-spline surface of input mesh (b) equals the
non-uniform C2 tensor-product B-spline surface of input mesh (c),
it suffices to discuss the case (c) in the following. For a concrete
comparison in this setting, the mesh in Fig. 15d is the geometric
input both for the GT-spline and for the T-spline, whereas Fig. 15e
is the tensor-product B-spline input mesh. As explained above, the
knot-intervals are chosen so that the B-spline surface equals the T-
spline surface. Fig. 15f,g show the highlight line distribution on the
surfaces.

In Fig. 15h two regular meshes are connected by a whole ring of
T-junctions. This is the (geometric) input mesh both for the GT-
spline and for the T-spline, but the knot-intervals differ: for the
GT-spline they can all be chosen equal, while the horizontal T-
spline knot intervals of bottom mesh are 0.5 when those of the top
mesh are 1. Fig. 15i shows the tensor-product mesh yielding the
C2 surface Fig. 15j that coincides with T-spline surface from mesh
Fig. 15h. Fig. 15k shows the GT-spline surface obtained directly
from Fig. 15h. The highlight lines of the GT-construction are very
similar to those of the (T-)spline construction even though the GT-
spline is placed at a disadvantage by capping T-junctions while the
(T-)spline can take advantage of a tensor-product mesh.

Given the similarity in shape, it is important to recall the essen-
tial difference between T-splines and GT-splines. The simple knot
intervals used locally above can lead to invalid knot-intervals when
considering larger meshes: T-splines require a global coordination
of knot sequences. Such global coordination is not always possible
or may require complex re-meshing. The GT-construction is local,
sidestepping the need for global coordination, and producing sur-
faces of comparable quality.

7.3 Separation and Re-meshing

The GT-constructions in Section 4, 5 and 6 follow a common
pattern, of adjusting the bi-3 frame and then forming a central
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cap of degree bi-4. The minimal submesh required for the GT-
constructions is called ‘net’. Only the outer boundaries of the frame
may have irregular nodes, where n 6= 4 quads meet, or T-junctions.
Guaranteeing such separation may not be easy in general (see Limi-
tations below) but often local adjustments can be made. While Sec-

tion 6 demonstrated that T̈ -nets can yield bi-4 surfaces of good
quality, better surfaces are often obtained by locally re-connecting
the mesh points to isolate the T-junctions as in Fig. 16c. Reconnect-
ing with an even larger footprint for a more symmetric reconnection
as in Fig. 16d can further improve the highlight line distribution, at
the cost of higher construction complexity.

(a) T̈ -net (b) mesh and bi-4 cap

(c) asymmetric re-mesh (d) symmetric re-mesh

Fig. 16. Effect of re-meshing on the resulting bi-4 cap.

7.4 Limitations

Quadrangulations can contain closely packed T-junctions and ir-
regular points. As our initial example demonstrated, Catmull-Clark
refinement is not a good way to separate T-junctions: not only does
subdivision increase the number of patches, but, more importantly,
it can negatively impact the surface quality. T-mesh subdivision
[Kovacs et al. 2015] can also start with irregular points adjacent to
T-junctions but does not separate T-junctions from irregular points.
Therefore, it too cannot be used for pre-processing.

Although re-meshing can reduce many configurations to the
three standard T-nets, GT-constructions are not expected to work
with arbitrary T-junction distributions. Here, the quad-meshing al-
gorithm or the designer have to enforce some discipline, already to
obtain good shape. Many-sided facets with T-junctions as generated
by [Alliez et al. 2003] or motorcycle graphs [Eppstein et al. 2008;
Myles et al. 2014b] are outside the scope of GT-constructions.

In many cases, our approach can allow for tighter packing of T-
junctions (for example as in Fig. 15,bottom row and Fig. 18) and
irregularities. However, this paper does not attempt to provide a set
of recipes for arbitrarily complex T-junctions. On one hand, local

re-connection can often reduce the situation to a collection of Ṫ -
net, T̈ -nets or

...
T -nets, but a principled prescription for such quad-

re-meshing is outside the scope. On the other hand, our experiments
with complex configurations show that keeping the complexity of
capping T-junctions to a minimum results in better shape.

(a) input mesh (b) bi-3 green, bi-4 else

(c) highlight lines (d) mean curvature

Fig. 17. Mesh and bi-4 surface combining a T-junction with irregular re-

gions of valence 3 and 5 where [Karčiauskas et al. 2016] is applied.

(a) input mesh (b) highlight lines

(c) bi-3 gold, bi-4 (blue, purple, red) (d) mean curvature

Fig. 18. Mesh and G
1 surface including horizontally paired Ṫ -nets (red)

and irregular neighborhoods (blue,purple) treated with [Karčiauskas et al.

2016]. This mesh does not admit a globally consistent (non-zero) knot in-

terval assignment for smooth T-splines.

8. COLLABORATION WITH MULTI-SIDED CAPS

Fig. 17 demonstrates that sufficiently isolated caps for T-junctions
co-exist without problems with irregular vertices where the surface
caps are also of degree bi-4 when we apply [Karčiauskas et al.
2016]. Again, tighter configurations are possible, but may reduce
surface quality while increasing the complexity of implementation.

Fig. 18 presents another free-form design that challenges algo-
rithms that require globally consistent knot intervals. As in Fig. 2,
enforcing T-spline Rule 1 yields zero knot intervals, now also at
extraordinary points.
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(a) Ṫ -net (b) T̈ -net (c)
...
T -net

Fig. 19. Distribution of the bi-degree 4 patches (red) for the three basic

configurations. The frames (green) are of degree bi-3.

9. CONCLUSION

The paper introduced a construction of surface caps for merging

and spreading feature lines via T-junctions. In the default Ṫ -case,
the caps consist of two surface patches of degree bi-4 Fig. 19, oth-
erwise of four bi-4 patches. The surrounding bi-3 patches are only
perturbed where they join the central cap. Since the approach is
based on geometric continuity, it does not require non-local coordi-
nation of knot intervals and is not restricted to graphs of functions
but applies to general manifolds.
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Carlotta Giannelli, Bert Jüttler, and Hendrik Speleers. 2012. THB-splines:

The truncated basis for hierarchical splines. Computer Aided Geometric

Design 29, 7 (2012), 485–498.

Wenzel Jakob, Marco Tarini, Daniele Panozzo, and Olga Sorkine-Hornung.

2015. Instant field-aligned meshes. ACM Trans. Graph 34, 6 (2015), 189.

http://doi.acm.org/10.1145/2816795.2818078

Hongmei Kang, Jinlan Xu, Falai Chen, and Jiansong Deng. 2015. A new

basis for PHT-splines. Graphical Models 82 (2015), 149–159.
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Table I. 5× 5 stencils, scaled by 144 to convey relative size of entries while using the fewest digits, of the bi-4 coefficients of the construction for Ṫ -nets.

Each stencil lists the weight of the control nodes surrounding the Ṫ -net.
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